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How far is it possible to reconstruct mathematical reasoning using the tools of logic is one of the central questions, which will be discussed on this conference. The answer to this question is complicated by the fact that both(mathematical reasoning as well as logic(underwent great changes in the past, and are still in the process of change. Thus for example before Regiomontanus, Stifel, and Descartes introduced the now standard algebraic notation, formal reasoning based on symbolic manipulations could not exist. Similarly, before Desargues introduced the notion of central projection and enriched the plane with infinitely remote points, any reasoning based on the principle of duality(a standard pattern of reasoning in projective geometry(was unthinkable. Mathematical reasoning is aided by special linguistic tools, and so the historical development of these tools has a fundamental influence on the various patterns of mathematical reasoning. Similarly, on the other side, as long as Aristotelian syllogistic logic was the only logic available, only very few patterns of mathematical reasoning could be recaptured using logical means. After Frege developed the predicate calculus, Turing formalized the notion of computability, and Tarski laied the foundations of logical semantics, much broader realms of mathematical reasoning became accessible to logical reconstruction. Thus the relation of logic to mathematical reasoning is a historical relation. 


The aim of this paper is to describe some common patterns of reasoning in geometry and algebra and to try to relate them to some semantic structures. But before turning to the history of mathematics, I would like to introduce some arguments, which stem from the debate on Kant’s philosophy of geometry.


1. The debate on Kant’s philosophy of geometry


The roots of the contemporary debate on Kant’s philosophy of geometry go back to Bertrand Russell, who in his Introduction to Mathematical Philosophy formulated a criticism of Kant’s position: „Kant, having observed that the geometers of his day could not prove their theorems by unaided argument, but required an appeal to the figure, invented a theory of mathematical reasoning according to which the inference is never strictly logical, but always requires the support of what is called „intuition“. The whole trend of modern mathematics, with its increased pursuit of rigour, has been against this Kantian theory.“ (Russell 1919, p. 145). Thus according to Russell, Kant’s mistake was, that he believed in the existence of some forms of reasoning that cannot be captured by logic.


Another important argument against Kantian philosophy was formulated, among others, by Rudolf Carnap who wrote: „Today it is easy to see the source of Kant’s error. It was a failure to realize that there are two essentially different kinds of geometry(one mathematical, the other physical. Mathematical geometry is pure mathematics. In Kantian terms, it is indeed both analytic and a priori... It is simply a deductive system based on certain axioms that do not have to be interpreted by reference to any existing world. ... Mathematical geometry is a theory of logical structure. It is completely independent of scientific investigations; concerned solely with the logical implications of a given set of axioms. Physical geometry, on the other hand, is concerned with the application of pure geometry to the world. Here the terms of Euclidean geometry have their ordinary meaning.... The distinction between the two geometries became especially clear through David Hilbert’s famous work on the foundations of geometry.“ (Carnap 1966, p. 181-182).


Nevertheless, in the same time, when Carnap published his Philosophical Foundations of Physics, Jaakko Hintikka started a series of papers, in which he argued, that Russell’s interpretation of the Kantian philosophy of mathematics is misleading. Hintikka identified the point where, according to Kant, mathematical reasoning must make recourse to intuition. This point is the introduction of new objects into the discourse (a proof or a calculation). Thus, Russell is misinterpreting the Kantian position, when he ascribes to Kant the view, that the inference in mathematics is not strictly logical. Hintikka quotes Kant on several places to show, that in Kant’s view not the inference, but the introduction of new objects makes the mathematical reasoning synthetic. After the new objects have been introduced, all inferences happen in full accordance with logic.


Some twenty years later Michael Friedman developed Hintikka’s arguments further and offered a defense of the Kantian philosophy also against Carnap’s criticism. He took from Hintikka the idea, that it is the introduction of new objects into the discourse, which makes mathematical reasoning synthetic. Therefore he compared how new objects are introduced in Euclid’s and in Hilbert’s treatment of geometry. It turned out, that the main difference between Euclid and Hilbert lays in logic. „The basis of the modern approach, beginning with Pasch in 1882 and culminating in Hilbert’s Foundations of geometry (1899), is to include an explicit theory of order: a theory of the structure and cardinality of the points on a line. ... The presence of some such axioms as 1-6 [axiom of connectedness, of denseness, etc.] is the chief difference between Hilbert’s axiomatization and Euclid’s“ (Friedman 1985, 464). The main point is, that for Kant logic was still syllogistic logic, while the theory of order formulated by Pasch or Hilbert required the use of modern quantification theory. Therefore Kant could not recapture notions such as continuity or denseness within his logical framework, and was forced to turn to intuition, which offers us a rather simple image of the continuum. So Kant could not make a distinction between mathematical and physical geometry, simply because the logical tools he had at his disposal, were too weak for a strictly deductive treatment of geometry. Carnap’s criticism is therefore „quite fundamentally unfair to Kant; for, in the first place, Kant’s conception of logic is certainly not our modern conception. Our distinction between pure and applied geometry goes hand in hand with our understanding of logic, and this understanding simply did not exist before 1879 when Frege’s Begriffsschrift appeared.“ (Friedman 1985, 456). 


1.1 An argument on the syntactic role of intuitive representations in pre-Fregean mathematics


Friedman’s position can be summed up in the form of the following argument: In 1879 Frege introduced a powerful syntactic tool in the form of his quantification theory. This theory makes it possible to formulate the existence of certain objects, like the least upper bound, and to express certain properties, like continuity or denseness. Before Frege, however, the same objects and the same properties had to be represented intuitively, because logic was too weak for this purpose. Thus before Frege intuition was an important component of the construction of mathematical theories and played a fundamental role in mathematical reasoning. Its role was to compensate the weaknesses of logic. Only after Frege, when tools for a logical reconstruction of these intuitive representations was available, the recourse to intuition became superfluous. Tools, like diagrams or pictures were degraded to a psychological role and were expelled from the foundations of mathematics. 


The logicians, of course, do not like to be reminded that there were times when their beloved logic was a rather weak tool, and they simply project the modern conception of logic on the whole history of mathematics. This prevents them from seeing the important role, which intuitive representations played in mathematical reasoning. This role had nothing to do with heuristics or psychology of invention. Intuitive representations were a fundamental tool, necessary for the construction of the universe of discourse in times, when this universe could not be constructed by the help of logical tools alone. 


Besides stressing the importance of intuitive representations in pre-Fregean mathematics, I would also like to stress, that they were not in conflict with logic. Quite on the contrary, intuitive representations were used to fulfill exactly the same roles, which are now fulfilled by logic. Beside the widespread prejudice, that intuitive representations belong to the context of discovery or to the psychology of invention (what is perhaps the case after Frege, but not before) there is another prejudice. Many philosophers believe, that there is some kind of conflict between logic and intuition. But there is no such conflict. As Friedman has shown (the details can be found in his paper), before Frege intuitive representations fulfilled exactly the same roles, which after Frege are fulfilled by logic.


1. 2 An argument on the semantic role of intuitive representations in pre-Tarskian mathematics 


Even though Friedman’s argument against Carnap’s criticism of Kant is convincing, it has one fault. It contradicts the historical evidence. Even if our modern distinction between pure and applied geometry goes hand in hand with our understanding of logic, it is matter of fact that a distinction between pure and applied geometry existed already some 50 years before Frege. It appeared for the first time in a letter of Gauss in 1830. A detailed reconstruction of the developments starting with the discovery of non-Euclidean geometry and culminating in Hilbert’s Foundations of Geometry is presented in a paper of Matthias Schirn on Kant’s theory of geometrical knowledge (Schirn 1991). In his paper Schirn offers a rather different account of the transition from the Kantian philosophy of geometry to the modern Hilbertian position. While Friedman stressed the importance of modern quantification theory and the emergence of a theory of order and continuity, Schirn stressed the discovery of the non-Euclidean geometry. Instead of choosing between Friedman’s analytic argument and Schirn’s historical reconstruction, I will try to reformulate Friedman’s argument so, that it would fit the historical evidence, presented by Schirn. 


Friedman’s argument is based on the analysis of the role of Frege’s quantification theory in the creation of modern geometry that means, this argument stresses the syntactic developments in modern logic. Nevertheless, similarly important developments were taking place also on the semantic level. It seems, that the fundamental logical innovation that was introduced by the founders on the non-Euclidean geometry, was the introduction of the notion of a model. It is of course true, that the first model of the non-Euclidean geometry was given by Beltrami in 1868, which is still too late to account for the distinction introduced by Gauss. But the idea of an interpretation, which is in many respects very close to the notion of a model, was the basis of the discoveries of the non-Euclidean geometry by Gauss, Bolyai, and Lobachevsky. Let us turn for instance to Lobachevsky, who discovered, that Euclidean plane can be interpreted on the horosphere of the non-Euclidean space (see Gray, p. 111-113). Thus the horosphere is nothing else, but a model of the Euclidean plane in the non-Euclidean geometry. Therefore the notion of a model seems to be the fundamental logical innovation, which formed the basis of the historical developments described by Schirn.


Thus the only thing we need to do with Friedman’s argument is to replace syntax by semantics. The introduction of the notion of a model is a deep change of the semantics of a mathematical theory. I believe, that it was precisely this change, that enabled Gauss to see the relation of geometry to physical space in a new way, and so to introduce the fundamental distinction between mathematical and physical geometry. So we can reformulate Friedman’s argument in the following form: Carnap’s criticism is quite fundamentally unfair to Kant; for, in the first place, Kant’s conception of semantics is certainly not the same as Gauss’ conception. Gauss’ distinction between pure and applied geometry goes hand in hand with his understanding of semantics, and this understanding simply did not exist before 1800 when the work of Gauss, Bolyai and Lobachevsky on the non-Euclidean geometry started. In these works, it seems, for the first time the notion of a model was introduced. Of course, we are in pre-Fregean mathematics, thus many aspects of this model are still based on intuitive representations.


2 Towards a reconstruction of the syntactic and semantic development of mathematics


The two arguments, which we extracted from the debate on Kant’s philosophy of geometry, shed new light on the role of intuitive representations in the development of mathematical reasoning.


We saw that syntactic constructions, such as the introduction of new objects, or the definition of new predicates and relations, which in the contemporary mathematics are done in the framework of Fregean logic, in the pre-Fregean mathematics had to be done using intuitive representations. Therefore we can formulate the program of a reconstruction of the syntactic development of mathematics, which would concentrate on the analysis of the syntactic aspect of these representations. The aim of such a reconstruction would be to see the development of mathematics as a systematic growth of its syntactic tools.  


In a similar way the semantic constructions, such as the introduction of a model, which are in contemporary mathematics accomplished using the framework of Cantorian set theory, in the pre-Cantorian mathematics had to be done by the help of intuitive representations. Therefore we can formulate the parallel program of a reconstruction of the semantic development of mathematics, which would concentrate on the analysis of pre-set-theoretical semantic tools. The aim of such a reconstruction would be to see the development of mathematics as a gradual maturation of its semantic structures.  


In the development of mathematics we are confronted with a never ceasing process of linguistic innovations. To try to create a formal language, in which a particular syntactic or semantic reasoning could be captured in an explicit form, that is what makes mathematics a creative enterprise. As soon as this language is created, logic can come in and turn the particular syntactic or semantic reasoning into an application of some logical rules. Even though logic cannot describe the process of the particular linguistic innovations in advance, with the hindsight all of the syntactic and semantic arguments can be reduced to logical rules in some sufficiently strong language. I am interested in the understanding of these changes of language, which turn implicit reasoning into logical rules.


2. 1 On the program of a reconstruction of the syntactic development of mathematics


Frege described the syntactic development of mathematics from elementary arithmetic through algebra and mathematical analysis to predicate calculus in his paper Funktion und Begriff:


„If we look back from here over the development of arithmetic, we discern an advance from level to level. At first people did calculations with individual numbers, 1, 3, etc.


 2 + 3 = 5                         2.3 = 6


are theorems of this sort. Then they went on to more general laws that hold good for all numbers. What corresponds to this in symbolism is the transition to the literal notation. A theorem of this sort is


 (a + b).c = a.c + b.c.


At this stage they had got to the point of dealing with individual functions; but were not yet using the word, in its mathematical sense, and had not yet formed the conception of what it now stands for. The next higher level was the recognition of general laws about functions, accompanied by the coinage of the technical term „function“. What corresponds to this in symbolism is the introduction of letters like f, F, to indicate functions indefinitely. A theorem of this sort is
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Now at this point people had particular second-level functions, but lacked the conception of what we have called second-level functions. By forming that, we make the next step forward.“ (Frege 1891).


Nevertheless, it is interesting to notice, that the transitions between the stages described by Frege, were mediated by geometry. Thus for instance between the stage of calculations with individual numbers and the stage of more general laws that hold good for all numbers, (corresponding to algebraic notation) there was a geometric stage, where line segments of indefinite length were used to represent generality. The length of these segments was not determined (the unit was not chosen) and so the segments could represent any number we wished. They fulfilled in geometric constructions the same function as variables do in algebraic calculations. More details about the reconstruction of the syntactic development of mathematics can be found in my paper, Kvasz 2000.


2. 2 On the program of a reconstruction of the semantic development of mathematics


In contemporary mathematics the semantic structure of a mathematical theory is described in the framework of set theory. Thus we ascribe to every variable a specific domain, to every function a domain and a range, to every constant an individual. Nevertheless, mathematical theories had a semantic structure also before Cantor developed his set theory. Thus the question arises, what means can we use in order to reconstruct the semantic structure of the mathematical theories of the pre-Cantorian era. 


One possibility is to use set theory also in the semantic reconstruction of the pre-Cantorian mathematics. But we have seen in the case of the syntactic reconstructions, that the uncritical use of the contemporary Fregean logic led to deep misinterpretations of the nature of the mathematical reasoning based on intuitive representations. Both Russell and Carnap misconceived Kant’s views precisely because they projected modern logic on the past. Therefore they viewed mathematical reasoning based on intuitive representations as mistaken and misleading, and did not realize, that the recourse to the intuition was absolutely necessary precisely because the logical tools of Kant’s times were too weak.


I believe, that a similar danger is lurking also behind the attempt to reconstruct the semantics of mathematical theories of the past by simply applying the contemporary set theoretical semantics on these theories. It seems better to look for a tool that would allow us to reconstruct the semantic structure of mathematical theories respecting the important role played by intuitive representations. Wittgenstein’s picture theory of meaning from the Tractatus can be used as such a tool. This theory, or at least some aspects of it, is apt in reconstructing the semantic shifts which occurred in the use of intuitive representations in pre-Fregean and pre-Cantorean mathematics.


While Wittgenstein understood the picture theory of meaning as saying that language is in a sense similar to a picture, I suggest reading it to say, that pictures (intuitive representations contained in mathematical texts) form a kind of language. This makes it possible to use the notions of the picture theory of meaning in the reconstruction of the semantic development of mathematical theories. Of particular interest for our purposes is the notion of the pictorial form and the distinction between expressing and displaying. („A picture cannot, however, depict its pictorial form: it displays it.“ (Tractatus 2.172)) Each figure contained in a mathematical text can be seen as having a specific pictorial form. This form consists of all those aspects of the figure, which do not directly represent anything, but are just displayed. Thus the main objective of our reconstruction is to analyze the pictorial form of the representative means used in mathematics.


Wittgenstein introduced the notion of the pictorial form as one of the central notions of the picture theory of meaning. This notion describes the correspondence between the world and its linguistic representation. The reconstructions of the development of geometry (Kvasz 1998) and of algebra (Kvasz 2004) based on this notion have shown, that the differences between the particular stages in the history of geometry or algebra can be described as differences of the pictorial form of the particular language. Thus the fragment of language, in which a theory, such as projective geometry or polynomial algebra, is formulated, has its own pictorial form. The task of the semantic reconstruction of the development of mathematics can be thus reduced to the task of reconstructing the changes of the pictorial form of their language.


It is known, that Wittgenstein later rejected his picture theory of meaning, because it turned out to be too narrow for the analysis of the ordinary language. Nevertheless, I am convinced, that as a tool for a semantic reconstruction of the languages of different mathematical disciplines it is still very useful. The languages of disciplines such as geometry or algebra can be seen as fragments submerged into ordinary language. So even though the picture theory of meaning cannot be used in the analysis of the ordinary language, it is very effective in the analysis of the languages of various mathematical disciplines. I will try to present the similarities and differences of the development of algebra and geometry as semantic similarities and differences, and I will reconstruct them as the similarities and differences of the particular pictorial forms.


3. On similarities of the semantic development of geometry and algebra


In this section I would like to present some examples from a reconstruction of the semantic development of geometry and of algebra. In this reconstruction I discriminate eight pictorial forms, which in their historical order are:


			- the perspectivist form


			- the projective form


			- the coordinative form


			- the compository form


			- the interpretative form


			- the integrative form


			-the constitutive form


			- the conceptual form.


From these eight forms I will present only two, the projective and the integrative form. Each of these two forms will be illustrated both on geometry and on algebra.


3. 1 The projective form


The first pictorial form that I would like to discuss is the projective form. The main semantic trick of this form is to construct more representations of the same situation, and then bring these representations into correlation. Thus in projective geometry the same situation is depicted from different points of view, and then these pictures are connected by a central projection. Similarly in algebra the basic idea is to express the same quantity in two or more forms, and then bring these expressions into a relation. So what is here new and what was impossible to express on the previous stages of geometry or algebra are these correspondences or relations. In geometry they have the form of central projections, in algebra the form of substitutions. From the semantic point of view they both have the same function. They make it possible to transform a representation while preserving its reference.


3. 1. 1 The projective form in geometry


Albrecht Dürer (1471 - 1528) showed us in one of his drawings a method by which it is possible to create a perspectivist painting. By a similar method the Renaissance painters discovered the principles of perspective. Among other things, they discovered that in order to evoke the illusion of two parallel lines, for instance two opposite sides of a ceiling, they had to draw two convergent lines. They discovered it, but did not know why it was so.


�


The answer to this, as well as many other questions concerning perspective, was given by projective geometry. Gérard Desargues (1593 - 1662), the founder of projective geometry, came up with an excellent idea. He replaced the object with its picture. So while the painters formulated the problem of perspective as a relation between the picture and reality, Desargues formulated it as a problem of the relation between two pictures. Suppose that we already have a perfect perspective picture of a jug; and let us imagine a painter, who wants to paint the jug using Dürer’s procedure. At a moment when he is not paying attention, we can replace the jug by its picture. If the picture is good, the painter should not notice the replacement, and instead of painting a picture of a jug he would start to paint a picture of a picture of the jug. 


�


The advantage brought by this idea is that, instead of the relation between a three-dimensional object and its two-dimensional picture we are dealing with a relation between two two-dimensional pictures. After this replacement of the object by its picture, we obtain a central projection of one picture onto the other with its centre in our eye. The centre of projection represents the point of view.
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Before we consider the central projection of any geometrical objects, we have to clarify, what happens with the whole plane, on which these objects are drawn. To make the central projection a one-to-one mapping, Desargues had first of all to supplement both planes with infinitely remote points. In this way he created the first technical tool for studying infinity. 


Before leaving our example let us sum up the characteristic aspects of the projective form. The first of them is the creation of the representation of a representation. In Dürer’s drawing as well as in Desargue’s figures not only an object is represented, but it is represented together with its representation. The second aspect is the explicit representation of the point of view, be it the eye of the painter in Dürer’s drawing or the centre of projection in the figures of projective geometry. The third aspect is a representation of the infinitely remote points, which we call ideal objects.


3. 1. 2 The projective form in algebra


The solution of a cubic equation was first published by Girolamo Cardano (1501-1576) in his famous Artis Magnae sive de Regulis Algebraicis in 1545. In books on history of mathematics the central idea of Cardano’s solution of the equation of the type 


				x3 + bx  =  c


is interpreted as the substitution
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Before the Italian school of algebraists of the 16th century, to which Cardano belonged, the mathematicians used only one expression for the unknown. It was not x (this convention comes from Descartes), but r, the first letter of the Latin word res. For the convenience of the reader we shall indicate the unknown by x. The substitution (1) is a great innovation, because it introduces a new representation for the unknown, and so the formula (1) itself can be seen as analogous to Dürer’s drawing, as a representation of a representation. It represents the same thing, namely the unknown, twice. First it represents the unknown using the letter x (which can be seen as an analogy to the jug in Dürer’s drawing) and then as � VLOŽIT Equation.2  ��� (which is an analogy to the picture of the jug in the drawing). Further, there is the sign =, which represents the relation between these two expressions. In Dürer’s drawing the eye of the painter (becoming the centre of projection in Desargues) was the point, which founded the sameness of the jug and its image in the representation. Therefore the sign = is an analogy of the point of view in algebra. As already Frege has shown, the sign = does not express any relation between things, therefore it does not belong to the expressions of the language, representing something from the domain of the theory. It can be rather seen as an aspect of the pictorial form, an aspect analogous to the centre of projection in the figures of projective geometry. The third aspect, which underlines the analogy between Cardano and Desargues, is the discovery of the casus irreducibilis, which finally led to the introduction of the complex numbers. Complex numbers are, in our view, ideal object, just as were the infinitely remote points in projective geometry. Their introduction or, in other words, an extension of the domain of the theory, is another typical aspect of this pictorial form.


We see here an analogy with geometry. The new pictorial form in algebra had all the features, that we found in geometry: a representation of a representation, a point of view, and the introduction of ideal objects.


3. 2 Integrative form


The second pictorial form, which I would like to discuss, is the integrative form. The detail can be found in my paper Kvasz 1998, so I will concentrate on the main idea. In geometry the integrative form corresponds to Klein’s Erlanger program, in algebra it corresponds to Galois’ theory. These two theories have a remarkably similar semantic structure. The main semantic trick in both of them consists in the separation of the structure (the metric structure of the plane in geometry and the structure of solvability of an equation in a field in algebra) from the ontological basis oof this structure (the plane or the particular field). The ontological basis of the theory becomes in this way a neutral medium, and the structure, after being separated from this medium, gets the form of a symmetry group (the group of transformations of the particular geometry, or the group of automorphisms of the particular field). The gain obtained by this separation of the geometric or algebraic structures from their ontological basis is the possibility to compare different such structures with each other. On the previous stages of development it was impossible to compare different structures, because their ontological fundaments were incompatible. Only due to separating the structures from their ontological foundations Klein became able to compare the structures of symmetries of the Euclidean and non-Euclidean geometries and Galois was able to compare the structures of symmetries of solvable and insolvable equations.


3. 2. 1 The integrative form in geometry


In geometry the integrative form is connected with the works of Arthur Cayley (1821-1895) and Felix Klein (1849-1925), and especially with the Erlanger program (1872). Before Cayley and Klein geometry was generally understood as something based on visual intuition. Therefore, although the non-Euclidean geometries were discovered one generation earlier, the Euclidean and non-Euclidean geometries were thought to be exclusive. Either we see the world in the Euclidean way, and then the non-Euclidean geometry is excluded, or we see the world in the non-Euclidean way, and then the Euclidean geometry is false. We cannot see the world simultaneously in the Euclidean and the non-Euclidean way. This mutual exclusivity of the two geometries was preserved also in Beltrami’s model of the non-Euclidean plane, because from the point of view of visual representation Beltrami used an ordinary Euclidean plane. Therefore his model is based on the Euclidean spatial intuition. Beltrami only speaks about objects, which he intuits in a Euclidean way using a non-Euclidean vocabulary.


 Klein (taking up the ideas of Cayley) changed this situation in a radical way. For Klein geometry is based not on visual intuition as such, but on transformations. Geometry is the study of the invariants of transformations groups. When we take geometry as a form of visual intuition, Euclidean and non-Euclidean geometries exclude each other. But when we understand geometry in the Kleinian way, that is as systems of invariants of transformation groups, the two geometries become compatible. They even exist together as subgroups of the projective group. Therefore we understand Klein’s move as a change of the pictorial form of the geometrical language. While using the languages based on the previous pictorial form it was impossible to study the relations between the various geometries, because they excluded each other. In the integrative form, the pictorial form introduced into geometry by Klein, all the different geometries are integrated into one general representation, and so it becomes possible to study their mutual relations.


3. 2. 2 The integrative form in algebra


I am convinced, that the integrative form is also the foundation of the Galois theory. As long as we understand the process of solving of an algebraic equation as a procedure of manipulation with algebraic formulas, all such procedures are mutually exclusive. If we make as a step of this process a specific algebraic transformation (an addition, a multiplication, a root extraction), all other alternatives are excluded. At one moment we can make only one algebraic operation, and if we decide to make one, all the other are excluded. To prove the insolubility of the quintic equations first of all this exclusiveness of the different algebraic manipulations has to be overcome. This was done by Evariste Galois (1811-1832), who introduced the notion of a splitting field and interpreted the process of solving an equation as a factorization of the so-called Galois group of this field. The splitting field of an algebraic equation is analogous to the projective plane in geometry. They both form a neutral background, which makes the introduction of a specific structure possible. And in both cases this structure has the form of a group. In algebra it is the group of automorphisms of the splitting field, in geometry it is the transformation group of the projective plane. And in both cases the group makes it possible to incorporate specific structures, which originally excluded each other, into one representation. In algebra different normal subgroups of the Galois group represent different ways of solving the equation, while in geometry the different subgroups of the projective group represent different geometries. The fundamental breakthrough in algebra, consisting in proving that the alternating group A5 has no nontrivial normal subgroups, and so the general equation of the fifth degree is insoluble, is thus based on the introduction of a language with a new pictorial form, the integrative form of the algebraic language.


3. 3 The various aspects of the pictorial form


I illustrated my approach on examples of the projective and the integrative forms. I hope that these examples were able at least to convey an impression of what I mean by the pictorial form. Now we can pass on to a closer examination of this notion. We can discriminate six aspects of a pictorial form: 


the epistemic subject of the language, 	the horizon of the language, 


the individua of the language, 		the fundamental categories of the language, 


the ideal objects of the language, 	the background of the language.


I believe, that these aspects are formal, i.e. they have no factual meaning. Let me explain what I mean by this on the example of the horizon. If we take a perspectivist painting of a landscape, we can clearly recognize a line, which is called the horizon. Nevertheless, if we went out in the countryside, represented by the painting, to the place of the alleged horizon, we would find nothing particular there. And the painter, when painting his landscape, did not paint the horizon by a strike of his brush. He painted only houses, trees, hills, and at the end the horizon was there. This is the meaning of Wittgenstein’s words: „A picture cannot, depict its pictorial form: it displays it.“ The painting does not depict the horizon; it displays it. The horizon is an aspect of the pictorial form and that means that it cannot be empirically determined. Despite the fact, that in the picture the horizon can be clearly determined, in the world represented by the picture there is no object corresponding to it.


It is interesting, that the languages of mathematical theories are full of such non-denotative expressions. Take for instance the zero or the unit in different algebraic structure, the negative or the complex numbers. The purpose of such non-denotative expressions is to connect the subject (the user of the language) with this world (the universe of the language). This connection happens on three levels.


3. 3. 1 The incorporation of the subject into the world


The first function of the pictorial form is to incorporate the epistemic subject into the world. This is achieved with the help of the point of view and of the horizon. The point of view (in projective geometry it was the centre of projection, in algebra the number zero) indicates the position of the subject, from the viewpoint of which the theory is formulated. The point of view thus incorporates the speaker into the world; it constitutes the identity of the subject in the universe of the language. 


The horizon (in projective geometry the vanishing line, in algebra the unit) coordinates the world and the epistemic subject. When it fixes the basic directions (the vanishing line determines the horizontal plane and in this way it determines the directions upwards and downwards; the unit determines the positive direction of the number line, thus discriminating the increasing from the decreasing), it constitutes the situatedness of the subject in the universe of the language. 


3. 3. 2 The structuring of the world from the point of view of the subject


The second function of the pictorial form is to structure the world from the point of view of the epistemic subject. This is achieved with the help of the introduction of the individua and of the fundamental categories of the language. To determine the individua means to identify objects in the world that are in a sense analogous to the subject; objects that the epistemic subject can refer to in a fixed way. Not accidentally the term „body“, by which individua are designated in classical mechanics, has its roots in the Old English term for corpse. A body is something analogous to our human body, something we can refer to in a corporeal way. Individuality is a fundamental attribute of the subject. The subject encounters himself as an individuum, and projecting his individuality to certain objects, he constitutes them as individua of the language. This is why the determination of the individua cannot be an empirical question, which could be decided independently from the particular pictorial form. Thus for instance in projective geometry, incorporating the infinitely remote points into the language, the two parts of a hyperbola are considered as forming a single curve, i.e. an individuum. Earlier it was natural to consider them as two different objects, i.e. as two individua. On a more abstract level even the three conic sections, the ellipse, the parabola, and the hyperbola, can be seen as three different positions of the same object, i.e. as a unique individuum. 


The next step to make, after the division of the homogenous continuum of being into discrete individua is to introduce different similarity relations into the world. Congruence, similarity or affinity are introduced into the set of all geometrical figures; similarly different congruence relations are introduced into algebra. In this way language introduces certain structure into the world, and so it makes the world more familiar for the subject.


3. 3. 3 The homogenization of the world


The third function of the pictorial form -- besides the incorporation of the subject and the structuring of the world -- is to introduce a neutral, homogenous background into the world. This helps the subject to find his orientation in the world as a whole. Typical elements of this kind are the different kinds of space in geometry (projective space, affine space, metric space, topological space), the different number systems in algebra (natural numbers, real numbers, fields, integral domains, rings). These notions do not refer to anything real, so we could possibly avoid using them. But it is obvious, that this would only make our language more cumbersome. Thus it is useful to add these formal objects to our language, which can help us to find our orientation in the world more easily. 


On this homogenous background we build different schemes. Nevertheless, it might happen, that the world is not in accordance with the schemes, we use. Then it is useful to add some ideal elements to the world, like the infinitely remote points are added to space in geometry, or the complex numbers are added to the number system in algebra. These again are expressions of the language, having no real denotation and therefore we include them into the pictorial form. But if we add them to the language, the world becomes more transparent. Schemes, which originally had only a restricted validity, become universal. After having added the infinitely remote points to the plane any two straight lines will have an intersection. Thus in the proofs it is not necessary to distinguish the different cases depending on the intersection of lines. Similarly in algebra after having added the imaginary numbers to the number realm every number will have a square root, and so it is not necessary to distinguish the different cases, depending on whether an expression is positive or not. All the schemes start to work much more smoothly, the world becomes more transparent.


We have seen, that the purpose of the respective aspects of the pictorial form is to situate the epistemic subject into the universe of the language, to structure this universe in a way comprehensible for the subject, and to provide means for a better orientation in the so structured universe. The aspects of the pictorial form, which constitute the identity, situatedness, individuality, similarity, orientation, and transparency, are not factual. The subject does not belong to the world (Tractatus 5.632: The subject does not belong to the world: rather, it is a limit of the world), the horizon does not denote anything factual, there are no fix individua, the space does not really exist, not to speak about the ideal elements. On the other side, we cannot deny, that all these aspects of language are useful, they help us to speak about the world in a more comprehensible way.


4.	On differences of the semantic development of geometry and algebra


It is rather surprising that the languages of so different disciplines as geometry and algebra have so much in common. The evolution of these disciplines can be characterized as the development of the pictorial form of their languages. This is quite natural, because linguistic expressions with direct or indirect denotations are bound by this relation of denotation, and so cannot change their meanings. On the other side the various aspects of the pictorial form, because they do not denotate anything real in the world, are to a great extent free. They are bound only by their mutual interdependence. If then the development of knowledge requires a change of language, the various aspects of the pictorial form offer enough space for innovation. 


4. 1. The omission of some pictorial forms


Perhaps the most important difference between the reconstruction of the development of geometry and of algebra concerns the coordinative and the compositive forms. While these forms are clearly present in the development of algebra, in the reconstruction of the development of geometry I could not find them.


Thus one kind of differences between the development of geometry and algebra may consist in the fact, that some of the eight above mentioned pictorial forms can play no role in the development of one of these disciplines, while it has an important role in the development of the other. This sheds some light on our method of reconstruction of the semantic development of mathematical theories. The list of eight pictorial forms, that I presented earlier, represents a succession of different possibilities, how can the correspondence between its expressions and the intended domain of the theory be arranged. These forms are ordered successively according their growing complexity. If in the use of the theory some difficulties appear, one of the possibilities how to solve them is to turn to a language with a more complex pictorial form, a form that is able to represent more complex situations. Therefore the most natural thing to do is to make one step in the succession of forms presented in our list. Nevertheless, it may happen, that the next pictorial form, that is the language with the smallest possible complication of the semantic structure, is not appropriate for the solution of the particular problems, which the theory encountered. So it may be necessary to make a more radical change, what will be manifested in omitting one or two stages in our list and turning to some more elaborate pictorial form. It seems that this happened in the development of the non-Euclidean geometry, when the coordinative form was of no use for the problems the founders of these new geometries encountered, and so they turned directly to the interpretative form. Therefore our list offers a maximal system of stages, a complete (at least I hope so) system of possible arrangements of the semantic correspondence of the expressions of the language with its intended universe, and from this list the actual development can select the appropriate ones.


4. 2. The differences of intuitive representations used in geometry and in algebra


An interesting aspect of the reconstruction of the development of geometry was a regular alternation of implicit and explicit forms. This was possible, because in geometry each pictorial form exists in these two clearly distinct versions. The situation in algebra is much more complicated. If we look at the development of the algebraic symbolism, we see that it is a rather slow and gradual process, stretching from Regiomontanus to Descartes, over more than two centuries. The dynamics here, instead of a change from an implicit version of the pictorial form to the explicit version (as was the case in geometry) consists in a slow process of reification of the expressions of the language. The world of geometry is opened as a whole to our sight, and therefore any change of it must happen at once, as a Gestalt switch. In algebra, by contrast, the world that is given to us is only fragmentary, we know only some of its „places“ where we have „fumbled around“ (in our calculations), we know only a few „tricks“ which we have found (as the substitution x = � VLOŽIT Equation.2  ���). Thus in algebra the emergence of a new pictorial form happens slowly and gradually, and does not resemble a Gestalt switch.


The contrast between the world opened to our sight and the world constituted in the process of reification of linguistic expressions enables us to explain another peculiarity of algebraic texts. Let us take Cardano’s Ars Magna. When we take up this book, we discover that it contains fragments belonging to different pictorial forms, fragments having very different semantic structure. It contains the famous rules for the solution of cubic equations. These rules are formulated in ordinary language, which is characteristic of the perspectivist form. As we have shown, these rules were derived with the help of a substitution, which is a typical feature of the projective form. Further, the book contains the famous casus irreducibilis, what is the germ of a new, coordinative form, the form in which the complex numbers will be incorporated into algebra. Thus it seems that an algebraic text may contain different fragments, belonging to three different pictorial forms. In geometry such a coexistence of fragments belonging to different pictorial forms is inconceivable. It is impossible to have a picture, which is partly Euclidean, and partly non-Euclidean. In geometry the world is disclosed as a whole, and thus all its parts must fit together.


References


Carnap, R. (1966): Philosophical Foundations of Physics. Basic Books, New York.


Frege, G. (1891): Funktion und Begriff. English translation in: Translations from the Philosophical Writings of Gottlob  Frege, edited by P. Geach and M. Black, Basil Blackwell, Oxford 1952, pp. 21-42.


Friedman, M. (1985): Kant’s theory of geometry. The Philosophical Review, Vol. 94, s. 456-506.


Friedman, M. (1992): Kant and the Exact Sciences. Harvard University Press, Cambridge.


Gillies, D. (ed.) (1992a): Revolutions in Mathematics, Clarendon Press Oxford.


Gillies, D. (1992b): The Fregean revolution in Logic, in: Gillies 1992a.


Gray, J. (1979): Ideas of Space Euclidean, Non-Euclidean, and Relativistic, Clarendon Press, Oxford.


Hintikka, J. (1965): Kant’s new method of thought and his theory of mathematics. Ajatus, Vol. 27, s. 37-43. Reprinted in: Knowledge and the Known, Modern Essays, Reidel, s. 126-134.


Hintikka, J. (1966a): Kant Vindicated. In: P. Weingartner, Ed., Deskription, Analytizität, und Existenz, Salzburg, Pustet, S. 234-253.


Hintikka, J. (1966b): Kant and the Tradition of Analysis. In: P. Weingartner, Ed., Deskription, Analytizität, und Existenz, Salzburg, Pustet, S. 254-272.


Kvasz, L. (1998): History of Geometry and the Development of the Form of its Language. Synthese, Vol. 116, p. 141-186.


Kvasz, L. (2000): Changes of Language in the Development of Mathematics. Philosophia Mathematica, Vol. 8, p. 47-83.


Kvasz, L. (2004): The History of Algebra and the Development of the Form of its Language. Sent to Synthese.


Russell, B. (1919): Introduction to Mathematical Philosophy. Routlege, London 1993.


Schirn, M. (1991): Kants Theorie der geometrischen Erkenntnis und die nichteuklidische Geometrie. Kant Studien, Vol. 82, s. 1-28.


Scholz, E. (ed., 1990): Geschichte der Algebra. Wissenschaftsverlag, Mannheim.


Wittgenstein, L. (1921): Tractatus logico-philosophicus. Frankfurt am Main: Suhrkamp 1964.


Acknowledgements


I would like to thank to Donald Gillies and Eberhard Knobloch for their criticism of the previous versions of this paper. I would like to express my gratitude to the Alexander von Humboldt Foundation for a scholarship, which made it possible to write this paper. The financial support of the grant VEGA 1/0223/03 is acknowledged.


�STRÁNKA  �21�














